
CS182 Project Report: Intrinsic Curiosity Module

Matthew Finlayson∗

matthewfinlayson

Nicolas Lepore
nicolaslepore

Andrea Zhang
andreazhang

December 7, 2020

1 Introduction

Much of reinforcement learning is dependent on defining extrinsic reward func-
tions for different states and actions, which can often be arbitrary or difficult to
define. [Burda et al., 2019] recently showed that it was possible to get great results
with the introduction of an “intrinsic” reward function based on the prediction
error of the learning agent. As an agent gets higher rewards for seeing a different
state than predicted, it is motivated to explore new environments. We aim to
compare reinforcement learning algorithms with intrinsic and extrinsic reward
functions on a number of tasks including raw performance and generalizability
while playing MountainCar.

Our code is based off of Seungeun Rho’s basic implementation of RL algorithms
which can be found at https://github.com/seungeunrho/minimalRL. Specif-
ically, we compared a PPO (Proximal Policy Optimization) algorithm to our
ICM (Intrinsic Curiosity Module) implementation from scratch.

2 Background and Related Work

The goal of our empirical investigation was to better understand how intrinsic
curiosity can be used to improve results by incorporating it into a PPO agent.
Our implementation followed closely the architecture specified in [Pathak et al.,
2017] and incorporates it in to the minimal PPO implementation by Rho.

In the context of this course, we saw this technique as a generalization of
Markov decision processes where the reward function cannot be directly observed.
Instead, we supplemented extrinsic reward with intrinsic reward to attempt to
approximate a new reward function by incentivizing surprising results. This
strategy is interesting because it follows a pattern seen in nature, where intelligent
animals seek out new experiences out of curiosity as part of their strategy. This
can have benefits as well as problems. For instance, people are easily distracted

∗All authors contributed equally, listed in alphabetical order by name.

1

mailto:matthewfinlayson@college.harvard.edu
mailto:nicolaslepore@college.harvard.edu
mailto:andreazhang@college.harvard.edu
https://github.com/seungeunrho/minimalRL

by screens which capture their attention through novel images and sensory input.
Similarly [Burda et al., 2019] found that agents were easily distracted when
screens flashing random images were placed in their environment.

3 Problem Specification

We wanted to train an agent to the play the game MountainCar using both
PPO (Proximal Policy Optimization) and ICM (Intrinsic Curiosity Module) to
compare the two performances.

Note: the choice of MountainCarContinuous is unimportant, since this algorith-
mic framework can apply to many tasks and environments!

4 Approach

We opted to focus on the AI algorithm rather than the environment. Though there
are definitely ways to fine-tune our model to perform better on MountainCar,
we decided to prioritize generalizability, as that was a large advantage of ICM.

First, we built upon Rho’s simple PyTorch PPO implementation and got it
working. PPO balances simple implementation, sample complexity, and ease
of tuning. At every step, it computes the update that will minimize the cost
function while keeping deviation from the previous policy relatively small. We
used this formula from [Schulman et al., 2017] to calculate each step:

The ICM has a number of components. At each timestep, given the transition
s, a, s′, the module calculates φ(s) and φ(s′) where φ is the “feature” encoding.
This encoding is meant to capture only parts of the state relevant to the actions
taken by the agent. Next, the inverse model g is used to predict â = g(φ(s), φ(s′)).
The loss LI(â, a) = â− a is minimized by training the parameters of both the
inverse model and the feature encoding, so that feature encoding will learn only
encodings relevant to the agent’s action. Next, the forward model f is used
to predict φ̂(s′) = f(φ(s), a), the next state, and the loss LF (φ(s′), φ̂(s′)) =

2

1
2 |φ(s′)− φ̂(s′)|22 is minimized by training the forward model to predict the next
state. The LF loss is also used as part of the reward for the agent, which tries
to maximize it by adjusting the policy π to generate states that the agent has
yet to see.

As suggested by the literature, rather than opting for a purely intrinsic reward
function, we used intrinsic curiosity reward with an external reward. This is
because pure intrinsic rewards can be very useful for level progression games,
such as Mario, where the environment changing unpredictably likely indicates
success. However, for games like MountainCar, there are issues. For instance,
the agent would not know that using an action such as acceleration has a reward
cost, and thus it would not factor into its optimization. Further, the agent would
not be rewarded for reaching the flag, besides seeing a restart of the game, which
does not provide enough incentive. Thus, ICM can be far more useful in this case
as a supplement to the external reward, rather than as the sole reward function.

5 Experiments

To build our intrinsic curiosity module, we had to make some design choices
about the architectures of each model. For simplicity we used feed-forward
neural networks with two hidden layers and ReLU activations for the feature,
inverse, and forward models. We briefly explored other architectures such as
convolutional neural networks as were used in [Pathak et al., 2017], but since our
use case was for very small state vectors, feed-forward nets seemed to already
contain more than enough expressiveness. Looking back, it may have been worth
it to simplify these architectures further by making the networks shallower and
feature encodings smaller (we used an 8 unit encoding when 2-4 probably would
have been sufficient).

We set up our agent to be able to switch on and off use of the intrinsic curiosity
module so that we could compare the two modes. We trained each agent on
the MountainCar problem from OpenAI Gym for 300 episodes and plotted the

3

results to compare them. The results are summarized in the plots included in
section 5.1.

5.1 Results

We used the MountainCarContinuous-v0 environment from the OpenAI Gym
with Classic Control. Each state is a [position, velocity] vector, and each action
is a ∈ [−1.0, 1.0]. The reward is 100 if the car reaches the flag, and −a2 · 0.1 if it
does not reach the flag. There were two local optima for MountainCar: either the
agent would learn to not accelerate at all, causing the reward to asymptote at 0,
or it would learn to reach the flag, causing the reward to approach approximately
90.

From this first graph, we can see that although the PPO alone and PPO/ICM
implementations would approach 0, the PPO/ICM version approaches it more
quickly and more consistently.

Then, we experimented with varying parameters. For fixed λ = 1.0, we varied
β from 0.0 to 1.0, where β is the parameter associated with how much inverse
and forward loss to include in the optimization problem. A lower β has more
inverse loss, while a higher β has more forward loss. We found that a more even
split of β = 0.5 or β = 0.2 had the best performance, which was consistent with
expectations, since we want to incorporate forward and inverse network losses

4

roughly evenly.

We then tried fixing β = 0.5 while varying λ between 0.0 and 1.0, where λ is
the parameter associated with how to scale PPO policy loss, which we derived
from previous research. We found that as long as λ was positive, it had a similar
effect. This is most likely because adding ICM loss is monotonic in the sense
that it keeps approximately the same maxima. However, when λ = 0.0, only the
ICM loss remains, so it continues to reward prediction error. This shows the
issue with only using intrinsic reward, as mentioned earlier. The model is always
updated with the newest observations, so it is constantly “surprised” as it can
never predict its environment.

When hypertuning the PPO with ICM model to MountainCarContinuous-v0 by
adding in state normalization, reward normalization, generalized reward estima-
tion, and additional intrinsic reward integration and entropy calculations from
tuning suggestions taken from https://github.com/adik993/ppo-pytorch, we
can solve the game, as it locates the global maximum of reaching the flag rather
than staying in place! This is significant, as the global optimum can be found
by a fine-tuned version of ICM, whereas it cannot be found by PPO.

6 Discussion

PPO is a versatile and effective algorithm, and can be successfully augmented by
other reinforcement learning techniques. In particular, ICM has the potential to
be incredibly useful for building general agents that can learn environments they
were never explicitly tuned to learn on. As we discover here, however, curiosity is
not necessarily well equipped to deal on its own with all environments, and is only
a heuristic for approximating reward functions. In problems like MountainCar,
where winning and losing is difficult to tell apart simply by looking at the state
and no novel experiences necessarily pop up in the form of new levels, ICM can
be a helpful addition to give a model an edge, but is not sufficient on its own.

In our experiments using varying amounts of ICM loss, as well as varying how
heavily to weight the environmental vs. intrinsic reward, we were able to explore
and improve PPO. As seen in other implementations of ICM found online,

5

https://github.com/adik993/ppo-pytorch

intrinsic curiosity can make the difference between solving a problem and getting
stuck at a local optimum. In future work we would be interested in experimenting
more with the architecture of the ICM, such as using convolutional neural nets
that look at the render of the environment as is done in some papers working on
ICM for environments like Mario. We would also like to explore modifying the
extrinsic reward function and environment to see if we could get the agent to
become less dependent on the extrinsic reward.

A System Description

Our code can be found at https://github.com/nlepore33/cs182curiosity.
To use our code and replicate our results, run python run.py (assuming you
have the basic Gym dependencies correctly installed) to train the agent. The
agent’s settings will be saved to a file which you can then generate plots for by
running python plots.py.

B Group Makeup

Our work was split up as follows.

Matt identified the relevant papers on intrinsic curiosity and proximal policy
optimization and found Rho’s minimal implementation of PPO on GitHub. He
designed the intrinsic curiosity module architecture and worked with Nick to
integrate it with Rho’s minimal proximal policy optimization agent. After the
presentation, Matt got the project report into shape for final submission.

Andrea worked hard throughout the project on debugging the code and spear-
headed the presentation preparation and execution. She also put together the
first draft of the project report.

Nick drove the latter half of the implementation phase, designed the experiments,
ran the experiments, aggregated and visualized the results, and worked closely
with Andrea to prepare the presentation.

All team members worked closely together and helped each other to make each
part of this project work.

References

[Burda et al., 2019] Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell,
T., and Efros, A. A. (2019). Large-scale study of curiosity-driven learning. In
ICLR.

[Pathak et al., 2017] Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
(2017). Curiosity-driven exploration by self-supervised prediction. In ICML.

6

https://github.com/nlepore33/cs182curiosity

[Schulman et al., 2017] Schulman, J., Klimov, O., Wolski, F., Dhariiwal, P., and
Radford, A. (2017). Proximal policy optimization. In OpenAI.

7

	Introduction
	Background and Related Work
	Problem Specification
	Approach
	Experiments
	Results

	Discussion
	System Description
	Group Makeup

