
AI Pricing Collusion
Multi-Agent Reinforcement Learning
Algorithms in Bertrand Competition

A thesis presented by
Nicolas Lepore
advised by

Prof. David C. Parkes
and

Gianluca Brero, Ph.D.

To
The Department of Computer Science
in partial fulfillment of the requirements

for the degree of
Bachelor of Arts (Honors)

in the subject of
Computer Science

Harvard College
Cambridge, MA
March 26, 2021

Abstract

As e-commerce and online shopping become more widespread, firms are start-
ing to maximize profit by using artificial intelligence, or more specifically rein-
forcement learning, to price goods. Calvano et al. [4] showed that in a simple
market with multiple agents controlled by a reinforcement learning algorithm,
the agents learn to collude above the competitive Nash equilibrium price, and
that these agents even punish deviations from this collusion, unlike what we
see when humans control pricing. I experimentally analyze these results and
replicate them, noting slight discrepancies. Then I extend these results to a
more practical and realistic setting using more complex reinforcement learning
algorithms, finding that these algorithms collude more reliably and much faster
at a higher price than the original, simple algorithm presented by Calvano et al.
I then consider ways to mitigate this collusion; one by introducing a supervisor
agent that changes demand resembling the Amazon “buy box” technique, and
another by introducing mechanisms that force prices downward at the cost of
market interference.

1

Acknowledgements

I would like to express my appreciation and greatest thanks to Gianluca Brero
for working with me, my code, and my blunders this past year. His insight,
creativity, and persistence allowed me to learn and excel, and he taught me
much that I will not soon forget. None of this was possible without Gianluca.

I would also like to deeply thank Prof. David C. Parkes for introducing me
to many of my academic passions, and even the field of my upcoming career.
As my most engaging professor and inspiring mentor, David has taught me how
to pursue my interests and apply my knowledge to any field I find exciting. I
am indebted to him for his critiques, ideas, and guidance, which have surely
changed my life. I also thank Prof. Finale Doshi-Velez for generously offering
to be my thesis reader and for introducing me to the study of reinforcement
learning.

I thank my parents for their unwavering support throughout my life, and for
encouraging me beyond my own doubts.

2

Contents

1 Introduction 7
1.1 Overview . 7
1.2 Contribution . 8

2 Model 9
2.1 Assumptions . 9

2.1.1 Generalization . 9
2.1.2 Definitions . 10

2.2 Nash Price . 11
2.3 Monopoly Price . 12

3 Reinforcement Learning and Replication of Results 13
3.1 Reinforcement Learning . 13
3.2 Experiment Design . 14
3.3 Replication of Results . 16

3.3.1 Q-learning . 16
3.3.2 Results . 16
3.3.3 Discrepancies with Calvano et al. 26

4 Application to Advanced RL Algorithms and a Continuous Ac-
tion Space 27
4.1 On-Policy vs. Off-Policy Algorithms 27

4.1.1 On-Policy . 28
4.1.2 Off-Policy . 28

4.2 Advanced RL Algorithms . 29
4.2.1 DQN . 29
4.2.2 A3C . 29
4.2.3 PPO . 30
4.2.4 DDPG . 30

4.3 Results . 30
4.3.1 Discrete . 30
4.3.2 Continuous . 39
4.3.3 Summary . 42

3

5 Mechanisms to Hinder Collusion 43
5.1 Supervisor Approach . 43

5.1.1 Overview . 43
5.1.2 Q-Learning . 45
5.1.3 Advanced Algorithms . 46
5.1.4 Discussion . 47

5.2 Environment Changes . 48
5.2.1 Downward Price Step . 48
5.2.2 Fractional Decrease . 50
5.2.3 Constant Decrease with Original Demand 52
5.2.4 Discussion . 54

6 Conclusion 55

4

List of Figures

2.1 Classical Bertrand competition Nash equilibrium [11] 11

3.1 Profit gain ∆ for specified parameters 15
3.2 Two examples of Q-learning training for 2.5m iterations with α =

0.1 and β = 5× 10−6 . 18
3.3 Two examples of Q-learning training for 4m iterations with α =

0.05 and β = 2.5× 10−6 . 18
3.4 Fixing an agent’s price, α = 0.15 and β = 1× 10−5 19
3.5 Cyclic collusive equilibrium, α = 0.15 and β = 1× 10−5 20
3.6 Punishing downward deviations from the collusive equilibrium,

α = 0.1 and β = 5× 10−6 . 22
3.7 Punishing upward deviations from the collusive equilibrium, α =

0.1 and β = 5× 10−6 . 23
3.8 Multiple agents’ equilibria for α = 0.15 and β = 1× 10−5 25

4.1 Different collusive optimums, both for 150k ε-steps 31
4.2 Few vs. many training iterations (or ε-steps) 31
4.3 DQN’s response to deviation . 32
4.4 DQN training for multiple agents 33
4.5 Exploration and evaluation for discrete A3C 35
4.6 Exploration and evaluation for discrete PPO 37
4.7 PPO’s response to deviation . 38
4.8 DDPG training for multiple agents 40
4.9 DDPG’s response to deviation . 41

5.1 Amazon “Buy Box” with sellers offering other prices below [5] . . 44
5.2 Q-learning with and without a supervisor agent 45
5.3 DQN with and without a supervisor agent 46
5.4 DDPG with and without a supervisor agent 47
5.5 Downward price step anti-collusive mechanism 49
5.6 Fractional decrease anti-collusive mechanism 51
5.7 Constant decrease with original demand anti-collusive mechanism 53

5

List of Tables

3.1 Profit gain ∆ . 15

4.1 Results of each algorithm . 42

6

Chapter 1

Introduction

1.1 Overview

As companies rely more and more on artificial intelligence to do business, an
amount of ambiguity arises concerning how this AI actually works to meet
company goals. Online shopping in particular has been on the rise for the
last decade or more, with the emergence of online retail giants such as Amazon
leading the way. With the surge in online shopping comes greater variety of
goods sold and more work for employees to price a large inventory across many
online shopping platforms.

With the help of artificial intelligence, or more specifically reinforcement
learning (RL), algorithms can be trained to price a certain good, and can dy-
namically change prices given a shock to the system, whether it is a supply shock
or a competitor attempting to undercut (or overcharge) the market. Thus, items
are priced to make the most profit, constrained by the simple economic princi-
ples of supply and demand.

However, certain unintended consequences arise that were not present when
the system was handled by humans, especially since communication about pric-
ing between businesses is considered anti-competitive, and therefore outlawed
in most countries.

Somewhat against the odds, collusion arises amongst reinforcement learning
agents. To reach a collusive outcome, exploration must find an optimal policy
that is simultaneously learned by all agents and coordinated with no explicit
communication. This was almost impossible in the human setting. As Calvano
et al. [4] showed, even the simple Q-learning multi-agent system can learn to
collude without explicit discussion, simultaneously increasing the price across
firms for higher company profit. The agents collude and communicate through
the price history, working towards an equilibrium and punishing other agents
when they deviate from this equilibrium.

This poses a threat to the free market and results in a lack of market effi-
ciency, favoring corporations over consumers.

7

Today, many prices are still determined by human salespeople and somewhat
arbitrary beliefs of value, but the near future will bring systematized pricing al-
gorithms similar to those described above. It is preferable to find these problems
earlier, before they are widespread and abstracted behind private intellectual
property.

Keep in mind that this change may not necessarily be a bad thing; pricing
may become more fair for all, and our society may reach an equilibrium of
efficiency the likes of which we have never seen. Goods would be purchased
purely based on exact demand or need, and we would only pay a lot for goods
that are in short supply or high demand. However, if we do not keep algorithms
in check or regulate the method by which we set prices, this may bring about a
reality of extreme market inefficiency and malpractice.

1.2 Contribution

My contribution to this space is to further the work of Calvano et al. [4], in which
they demonstrated that mere Q-learning can bring about collusive outcomes, to
a more practical setting. I first replicated and verified most of the results of
Calvano et al. in Chapter 3, with some notable discrepancies. My results
confirm that Q-learning colludes at a mostly similar level or collusive price, and
I verified that agents punish the deviations of other agents, albeit sometimes
in a more complicated pattern than Calvano et al. implies. I also found that
collusion decreases as we add more agents into the market. I introduced the
concept of dominating and cooperating collusive equilibria, to help differentiate
the types of cyclic equilibria that arise.

I then explored more complex algorithms and the extension into the contin-
uous price action space. I noticed that DQN and DDPG were the most reliably
collusive algorithms, with both exhibiting heightened collusive price over Q-
learning, in a significantly fewer number of training iterations.

I then attempted to impede this collusion while minimizing market inter-
ference, first through a supervisor collusion mitigation mechanism and then
through environmental changes meant to obscure collusive signal. In the super-
visor mechanism, I observed that collusion was mitigated drastically for DQN,
and moderately for Q-learning and DDPG. For the environmental changes,
I created mitigation schemes that resembled government regulation and anti-
collusive practices, but these constitute a loss of firm power and therefore a loss
in the free trade of the market. However, these methods significantly reduced
collusion.

My code repository nlepore33/gym-bertrandcompetition can be found here.

8

https://github.com/nlepore33/gym-bertrandcompetition

Chapter 2

Model

Bertrand competition, named after Joseph Louis François Bertrand, is an eco-
nomic model of competition in which firms (sellers) set prices and customers
(buyers) choose quantities depending on price [3]. Bertrand’s model was pro-
posed as a response to Antoine Augustin Cournot’s economic model, the Cournot
model, in which firms choose quantities to sell to customers. In Cournot’s model,
the equilibrium outcome involves firms pricing above marginal cost and hence
the competitive price. When firms choose prices instead of quantities, Bertrand
argued, then the competitive equilibrium price would be equal to the marginal
cost.

2.1 Assumptions

The assumptions of Bertrand competition are as follows. There must be at least
two firms n ≥ 2 producing a homogeneous or undifferentiated product. We must
also assume firms have the same marginal cost ci for their products. Explicit
collusion is forbidden. Firms must simultaneously enter a price pi,t, for firm i in
period t, at which they would like to sell their product. In the classical setting,
customers will purchase the product only from the firm with the lower price. If
firms charge the same price, sales are split evenly between those firms.

2.1.1 Generalization
We can generalize Bertrand competition to fit a wider variety of markets and
scenarios, with specifics from Calvano et al. [4].

We generalize one-shot Bertrand competition to a multiple time period ver-
sion of the problem, in which players play consecutive rounds of the one-shot
game. We reference time periods with parameter t. In this version, we allow
memory of a fixed length to be observed by each player before they take their
next action. A memory of length k consists of every player’s action for the last

9

k rounds. When formulated this way, Bertrand competition can be played with
several strategies; some incorporate cooperation while others involve deviation.

To generalize Bertrand competition further, instead of customers only pur-
chasing from the firm with the lowest price, we can alter the demand, substi-
tutability of products, and amount spent at each firm in the following way.

Following Calvano et al. [4], we assume a logit demand model, constant
marginal costs, and n firms each selling one product. Assume n differentiated
products and an outside good, so for each period t, the demand for product
i = 1, 2, ..., n is

qi,t =
e
ai−pi,t

µ∑n
j=1 e

aj−pj,t
µ + e

a0
µ

.

The parameters ai are product quality indices that capture vertical differ-
entiation, meaning brand differentiation from competitors. We say product 0 is
an outside good, so a0 is the inverse index of aggregate demand.

The parameter µ captures horizontal differentiation, or substitutability be-
tween products. In the case of perfect substitutes, µ→ 0. Therefore, as µ→ 1,
the products become less substitutable or more horizontally differentiated.

Let ci be the unit cost for firm i to create their product. The profit or reward
to firm i at period t is therefore

πi,t = (pi,t − ci)qi,t,

with πi,t representing profit, (pi,t − ci) representing profit per unit of product,
and qi,t representing demand of product.

2.1.2 Definitions
The definition of a Nash equilibrium is as follows. If each player in a game has a
chosen strategy (plan of action for every state in the game) and no single player
can increase its expected payoff by changing its strategy with other strategies
constant, then the current set of players’ strategies is a Nash equilibrium. We
denote the Nash equilibrium price as pN .

A weak Nash equilibrium exists when there is, for some player, equality
in payoff between the strategy in Nash equilibrium and some other strategy.
Therefore, a strict Nash equilibrium is if each player cannot change their strategy
in the Nash equilibrium without suffering a loss in payout.

The monopoly price is set by a seller with market power; a seller who can
increase price by reducing the quantity they produce. The monopoly price is a
useful benchmark to measure an outcome against, since in one extreme, a set
of players can collude so effectively that they price as if they were one firm in
a monopoly of the market, which is very advantageous to the firms. We denote
the monopoly price as pM .

To measure the level of collusion, we say the Nash equilibrium price consti-
tutes no collusion and is hence called the perfectly competitive outcome, and we

10

say that the monopoly price constitutes full collusion and is hence called the
perfectly collusive outcome.

The competitive equilibrium or competitive price is the price at which buyers
and sellers agree to exchange goods, commonly referred to as where demand
meets supply. In general terms, holding supply constant, we know that an in-
crease in demand will increase prices and a decrease in demand will decrease
prices. Holding demand constant, we know that a decrease in supply will in-
crease prices and an increase in supply will decrease prices. The competitive
price is where these functions intersect, to form the agreed upon value of the
product.

2.2 Nash Price

As Bertrand himself argued, the Nash equilibrium price in the classical case of
perfect substitutes, or µ→ 0, is the marginal cost ci of the product. In this one-
shot Bertrand competition, the best strategy is to slightly undercut the other
player or players, and this logic inductively leads to a Nash equilibrium equal to
the marginal cost. Indeed in our multi-timestep version, in each round, the firm
that receives no sales should undercut the other to receive positive profit, until
the firms settle on the marginal cost. No firm will price below the marginal cost,
since this would give them negative profit. This logic applies to any number
of players n ≥ 2, since a single player will enjoy all demand if it undercuts all
other players. This is a weak Nash equilibrium, since firms lose nothing from
deviating to above the Nash price once they have achieved Nash equilibrium
(N).

(a) Firm 1 reaction function (b) Both firms’ reaction function and N

Figure 2.1: Classical Bertrand competition Nash equilibrium [11]

Figure 2.1a shows the optimal action for firm 1 as a function of p2. When
p2 < MC, the best response for firm 1 is to price at marginal cost MC, since
it does not want negative profit. When p2 > pM , or the price of firm 2 is above

11

the monopoly price, firm 1 maximizes profit by charging its own monopoly price
pM . When MC < p2 < pM , firm 1 should slightly undercut p2 to receive all the
profit. Figure 2.1b shows this same function for both firm 1 and 2, and labels
the intersection N as the Nash equilibrium price, which is MC for both firms.

In the case of the logit demand mentioned above, products are differenti-
ated (µ 6= 0), so the Nash equilibrium price pN is not necessarily the marginal
cost ci. We can calculate the Nash equilibrium for the generalized scenario by
maximizing profit with respect to price as follows,

d

dpi,t
πi,t =

d

dpi,t
(pi,t − ci)qi,t

=
d

dpi,t
(pi,t − ci)

e
ai−pi,t

µ

e
a0
µ +

∑n
j=1 e

aj−pj,t
µ

0 =
e
ai−pi,t

µ

e
a0
µ +

∑n
j=1 e

aj−pj,t
µ

(
1 +

e
ai−pi,t

µ (−ci + pi,t)

µ(e
a0
µ +

∑n
j=1 e

aj−pj,t
µ)

− −ci + pi,t
µ

)
.

Finding the root simultaneously for all n firms (i.e. finding the root for d
dp0,t

π0,t

and d
dp1,t

π1,t simultaneously), we can find the pN , or the Nash equilibrium.
A simpler, guess-and-check iterative approach and explanation would be to

iterate through every price (e.g. from 0 to 10 with increment 0.01) in the domain
and see if a single player deviation would increase its own profit. The price at
which there is no useful deviation by a single player is the Nash equilibrium pN .

2.3 Monopoly Price

We also want to measure the price that is considered the monopoly price or
perfect collusion, to measure the extent to which the collusion exists. The
monopoly price represents the price at which all players are maximally colluding
to optimize their profit given the demand curve, wholly exploiting the customers.
Therefore, the monopoly price depends on the demand curve to extract the most
profit from the customers.

To find the monopoly price, we maximize the profit function of a single firm
i, as

pM = max
pi,t

πi,t = max
pi,t

((pi,t − ci)qi,t).

12

Chapter 3

Reinforcement Learning and
Replication of Results

3.1 Reinforcement Learning

We have already assumed the multi-timestep version of Bertrand competition,
and now we will translate much of the language of Bertrand competition and
economics into the language of reinforcement learning.

In reinforcement learning, or RL, an agent uses the state or observation to
decide an action from the available action choices. Agents try to maximize their
reward, which is usually given to the agent after it makes an action. The agent
uses algorithms motivated by probability and expected reward to maximize
rewards effectively.

In our experiment, the agents are the players, and we denote the number of
agents with n. The actions are deciding which price to use in the market, so an
example action would be agent 0 choosing price 1.5 for the round. The state
or observation is the memory of the previous k rounds, which is all the agent
gets to see before making an action. The reward in period t is the profit from
period t, which is given by πi,t as before. We will touch on different algorithms
for choosing actions later.

Different reinforcement learning algorithms operate on different types of ac-
tion spaces. Some algorithms, such as Q-learning and DQN, require that the
set of available actions be of a fixed, discrete size to function properly, since
they usually tabulate expected reward values in a discrete manner. Other al-
gorithms can work on a continuous scale of actions, and calculate values using
neural networks or other means. Some algorithms can operate on both discrete
and continuous action spaces. For the discrete case, our pricing action space is
separated into m equally spaced points in the same price action range. For the
continuous case, the entire price action range is permitted.

13

3.2 Experiment Design

We must make a few limitations and computational assumptions to run our
experiments.

First, we must have a notion of the action space, which is the set of all
available actions, or in our case all available prices for an agent to choose. In
our setting, we must limit the action space so it is not infinite. The action space
in both the discrete and continuous settings is limited to the range of

[pN − ξ(pM − pN), pM + ξ(pM − pN)],

where the parameter ξ > 0 can expand the range of the prices. Prices range from
below Nash pN to above monopoly pM . For the discrete setting we separate this
range into m equally spaced prices, and for the continuous setting we allow the
entire range of prices. This is without loss of generality since the real market
works on a continuous scale, and the discretization of prices is necessary to
employ discrete algorithms.

For our algorithms to have memory, we will store all of the prices from the
last k periods of the experiment. Therefore, the state or observation space is

st = {pt−1, ..., pt−k},

with pt representing the vector of all agents’ prices in period t.
For almost all experiments, we initialize our parameters in the following way.

We create a duopoly (n = 2) with marginal cost ci = 1, product quality indices
ai = 2, outside good quality a0 = 0, horizontal differentiation µ = 0.25, discrete
action space evenly split into m = 15, expansion of action space ξ = 0.1, and a
one-period memory k = 1.

For this specification, the Nash equilibrium is pN ≈ 1.473 and the monopoly
price is pM ≈ 1.925.

To explain results and extent of collusion, Calvano et al. [4] use the notion
of ∆ to quantify average profit gain between pN and pM . We define it as

∆ ≡ π̄ − πN

πM − πN
,

where π̄ is the average per-firm profit upon convergence, πN is the profit at the
Nash equilibrium pN , and πM is the profit under full collusion at the monopoly
price pM . Therefore, ∆ = 0 corresponds to the competitive outcome and ∆ = 1
corresponds to the perfect collusive outcome. Below is a plot and table of profit
gain; note the plot’s concavity.

14

Figure 3.1: Profit gain ∆ for specified parameters

Price Profit ∆ (Profit Gain)
1.45 0.213 -0.085
1.5 0.234 0.098
1.55 0.254 0.271
1.6 0.272 0.433
1.65 0.289 0.580
1.7 0.304 0.709
1.75 0.317 0.819
1.8 0.327 0.905
1.85 0.333 0.965
1.9 0.337 0.996
1.95 0.337 0.996

Table 3.1: Profit gain ∆

15

3.3 Replication of Results

3.3.1 Q-learning
First, we replicated the results of Calvano et al. [4] by programming the Q-
learning algorithm from scratch in Python. In this setting, each agent is per-
forming Q-learning independently of one another, and tabulates their own re-
spective Q-table and values, which we will explain soon. Q-learning is a model-
free reinforcement learning algorithm that is considered a simple and efficient
way to solve RL problems. It is an off-policy algorithm, so it maximizes across
potential next actions instead of following a policy and updating after, as with
an on-policy algorithm.

The Q-learning algorithm is as follows:

Q(st, at)← Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at)),

where Q is the Q-table for determining optimal actions, α is the learning rate,
t denotes the timestep/period, rt is the reward, and γ is the discount factor.

For deciding how to take the next action, we use the epsilon-greedy algorithm
for Q-learning, with ε probability of taking a random action from those available.
We define ε as

εt = e−βt,

where β parameter controls the speed at which randomization decays. When
we do not take a random action, we choose the next action in state st by taking
the argmax over the Q-table as follows,

at+1 = argmaxaQ(st, a).

With this process defined, we took the following initializations and assump-
tions from the Calvano et al. [4] paper.

We let discount factor γ = 0.95.
The learning rate can vary, but we mostly use a value of α = 0.1.
The epsilon decay can vary, but we mostly use a value of β = 0.00001 =

1× 10−5.
For Q-learning, we define convergence as requiring each agent to keep the

same action for 100k consecutive rounds. This ensures that stability is obtained,
unless we see a cycle around the real equilibrium value, since the discretized
action space limits the algorithm’s expressiveness and ability to be precise. If
we do not converge after 5 million repetitions, we stop the experiment.

3.3.2 Results
As Calvano et al. proved, if all agents adopt Q-learning, we observe a significant
collusion above the Nash equilibrium, for several different environment speci-
fications. Note that for all plots, we include the actual actions taken as well

16

as their moving average (MA) of window size 1000. This helps gather infor-
mation about action profile trends, and is especially useful for more advanced
algorithms.

We will broadly define the term collusive equilibrium as the agents’ collusive
behavior leading up to convergence, or for algorithms that show cycles or more
complicated strategies, the agents’ collusive behavior leading up to the termi-
nation of the training run. This definition is purposely general, as we will see
that collusion exists in different ways depending on the algorithm.

The collusive equilibrium is defined and measured in two ways: one by how
near it is to the monopoly price, and the other by the ability to punish devia-
tions, which can be shown through a price perturbation and the ensuing actions
of both agents. Therefore, we refer to the collusive price as the price or moving
average price in the last few iterations before we end the training run.

Dominating vs. Cooperating Collusive Equilibria

For ease of interpretation, we will define the novel terms of cooperating collusive
outcome and dominating collusive outcome. A cooperating collusive outcome is
one where agents price the same or very nearly the same as each other at their
long-run collusive equilibrium; this way, agents are receiving nearly the same
reward or profit. In a dominating collusive outcome, one agent prices below
the other consistently while still significantly above the Nash price, and hence
is still colluding. We will define the “dominating” agent as the agent pricing
below the other, and the “subordinating” agent as the agent that prices above
the other, since in the classical Bertrand setting it is dominant to price below
the other player. However, this dominating collusion is still usually mutually
beneficial, since the dominating agent is receiving more demand at a lower price
while the subordinating agent is receiving less demand at a higher price. A
cyclic collusive outcome is a collusive equilibrium in which the price of one
or more agents cycles between discrete prices, in a pattern of 2 to 4 or more
stops. Dominating equilibria mostly occur when we observe a cyclic collusive
equilibrium, which we will present later. However, this is not always the case.

As stated earlier, for this specification of parameters in duopoly (n = 2),
the Nash equilibrium is pN ≈ 1.473 and the monopoly price is pM ≈ 1.925, as
shown in the figures.

17

(a) Cooperating collusive equilibrium (b) Dominating collusive equilibrium

Figure 3.2: Two examples of Q-learning training for 2.5m iterations with α = 0.1
and β = 5×10−6. The moving average prices for each agent are the middle two
lines. Here, it takes roughly 2m iterations to converge, with collusive behavior
arising near 1m iterations.

(a) Cooperating collusive equilibrium (b) Dominating collusive equilibrium

Figure 3.3: Two examples of Q-learning training for 4m iterations with α = 0.05
and β = 2.5 × 10−6 (more thorough exploration). The moving average prices
for each agent are the middle two lines. Here, it takes roughly 4m iterations to
converge, with collusive behavior arising near 2m iterations.

We can see that for these specific parameters, the collusive equilibrium arises
after a different number of iterations, since we have a different length of explo-
ration determined by β. The orange and blue lines represent specific actions
taken in a time step, while the green and red lines, along with their blended
color of brown, represent the moving averages (MA) for the two agents respec-
tively. The Nash equilibrium and monopoly price are represented by blue and
red dotted lines respectively. We kept this format throughout experimentation.

As we see here, each training run produces different outcomes, and occa-
sionally the agents do not share the same equilibrium action. Overall across

18

experiments, we observe values of ∆ in the range of 60-90%, which mostly
aligns with Calvano et al. results, and constitutes a significant increase in price
and profit over the Nash equilibrium. We will see that ∆ increases with more
sophisticated algorithms. In Figure 3.2a, the two agents settle on the same equi-
librium, and we see that they punish deviations from this equilibrium. However,
in Figure 3.2b, the pair have settled into an equilibrium where agent 0 happens
to dominate agent 1, because they have decided this is the optimal move after
the exploration period. Punishment upon deviation is still observed, so both
are viable collusive equilibria. Figure 3.3 shows the same effect with more thor-
ough exploration and learning parameters for a higher number of iterations, so
collusive price is mostly constant across more thorough exploration runs.

As an illustrative example of how dominating collusive equilibria can exist,
and to show that our algorithm is performing optimally, observe what happens
when we fix one agent’s price near the monopoly price and one agent’s price at
the Nash price. See Figure 3.4.

(a) Fixed at 1.81 (b) Fixed at Nash price

Figure 3.4: Fixing an agent’s price, α = 0.15 and β = 1 × 10−5. When we fix
agent 1’s price at 1.81, agent 0 learns to optimize profit by pricing near 1.62 after
exploration has decayed. This explains why dominating collusive equilibria are
still locally optimal, since an agent can potentially maximize profit by neither
cooperatively colluding nor pricing the Nash, but instead pricing in between.
When we fix agent 1’s price at the Nash price, agent 0 learns to price the Nash
as well, which, by definition of the Nash, is the optimal solution.

All advanced RL algorithms that I test later exhibit this same behavior.
We can see that when fixing the price near the monopoly price, it is optimal to
price between the fixed price and the Nash. When fixing the price near the Nash
price, it is optimal to head towards the Nash, or the competitive equilibrium.
Therefore, a dominating collusive equilibrium may arise before a complete devi-
ation to the Nash price. All of the algorithms behave this way, since once we fix
an agent’s price, it becomes a single agent reinforcement learning problem, in
which the profit for each action does not fluctuate between rounds, unlike in the
multi-agent version. Applying this to multiple agents dramatically complicates

19

the problem, and reveals information about how the algorithms work internally
and how likely they are to collude.

Cyclic Collusive Equilibria

Because the action space is discrete, agent prices can sometimes “cycle” or “os-
cillate” as shown in Figure 3.5. We will refer to these collusive equilibria as
cyclic collusive equilibria, or a collusive equilibrium in which the price of one or
more agents cycles between discrete prices, in a pattern of 2 to 4 or more stops.
We will refer to the kinds of collusive equilibria we have seen so far as stationary
collusive equilibria.

An algorithm can cycle because the discrete action space may occasionally
lack the exactness necessary to express an optimal collusive price. Cycles do
not occur in the continuous setting.

(a) Entire training (b) Last 100 training steps

Figure 3.5: Cyclic collusive equilibrium, α = 0.15 and β = 1 × 10−5. The left
plot is the entire training run, while the right plot is zoomed in on the last 100
training steps. Note that both agents use a cycle, and trade off which gets more
demand or higher price.

Note the block of orange action at the end of training: this is a cycle at work.
We also view a somewhat lower equilibrium because our α and β parameters
allowed for less exploration during training.

An important note: much of what we describe as a dominating collusive
equilibrium arises from the fact that a cyclic strategy of one agent may have a
higher moving average profit or reward than a cyclic strategy of another agent.
In some cases, instead of an agent allowing themselves to be dominated by
another agent, they are trapped in a complex cycle that happens to favor one
agent over another, although it is possible that an agent learns to be dominated
since this can maximize reward in certain scenarios. Some cycles are not simply
bouncing back and forth between two discrete prices; instead, it often can involve
a cycle of mainly 2 to 4 stops, which repeat themselves indefinitely once ε has
decayed enough to stop random exploration.

20

In the example above of Figure 3.5a, looking at their equilibrium moving
average prices, since the price space is split up evenly into 15 discrete prices,
these moving averages cannot and do not represent discrete prices themselves.
Instead, they are the moving averages of cyclic patterns.

Punishing Deviations

To show that this behavior is in fact collusion, we can show how the Q-learning
algorithm punishes agents that deviate from the collusive equilibrium by per-
turbation, i.e. forcing one agent to price lower than the collusive price. When
we perturb the equilibrium by forcing one agent to deviate, we expect the other
agent will “punish” this deviation by slightly undercutting the agent who devi-
ated, slowly increasing the price until they are once again at the same collusive
equilibria. This works in dominating and cooperating collusive equilibria, as
well as in cyclic equilibria. Without this behavior, we could not accurately
state whether collusion was occurring between the agents. Collusion must be
upheld by threat of punishment, or else an agent could possibly benefit from
deviating in the long run.

21

(a) Cyclic equilibrium (b) Stationary cooperating equilibrium

(c) Stationary dominating equilibrium

Figure 3.6: Punishing downward deviations from the collusive equilibrium, α =
0.1 and β = 5 × 10−6. We notice in the cyclic equilibrium (a) that once agent
0 deviates, agent 1 punishes the deviation by pricing below the subsequent
moves of agent 0, and coaxes agent 0 to return to the original equilibrium by
staying just below agent 0’s prices, subtly punishing on the way up. In both the
cooperating (b) and dominating (c) equilibria, we see a similar punishment and
return to original collusive equilibrium, but these punishment strategies may
take 2 tries as in (b) or display a punishment pattern that is harder to interpret
as in (c). These all come from single runs, and punishment strategies change
depending on the run.

We force agent 0 to deviate and price low, and keep the other agent constant
when we make our perturbation. Note how in Figure 3.6a, agent 1 decreases
its price three times to retrieve agent 0, who starts to enjoy a higher profit
because of its low price. In Figures 3.6b and 3.6c, we notice a more erratic pun-
ishment phase, in which agents punish in less obvious ways and jump between
prices before finally returning to the collusive equilibrium. These represent the
punishment agent attempting to bring the deviating agent upward, but failing
maybe one or two times. These figures also depart slightly from Calvano et al.’s

22

results, which we will touch on later.
When agent 1 decreases price in both scenarios, agent 1 may even price below

the Nash to punish agent 0. Then agent 1 stays beneath agent 0 on their way
back up, to punish until the original collusive equilibrium is achieved, depriving
the other agent of any incentive to stay pricing low.

One interesting result that was studied after the results of Calvano et al.
by Abada and Lambin [1] was the behavior of agents when the deviation was
upward, instead of downward. Since it is dominant to price below the other
agent, what would happen if we priced above the collusion? As we mentioned
before, it is not necessarily always better to price below the other agent, since an
agent can enjoy a higher price with less demand and still make comparable profit.
So, would an upward deviation still constitute deviation that is “punishable”?
Upward deviations for the same three training runs are shown in Figure 3.7.

(a) Cyclic equilibrium (b) Stationary cooperating equilibrium

(c) Stationary dominating equilibrium

Figure 3.7: Punishing upward deviations from the collusive equilibrium, α = 0.1
and β = 5 × 10−6. In each scenario, agent 1 punishes agent 0 by pricing
low, which causes a quick return to the original collusive equilibrium. In each
instance, agent 0 is quite willing to price low after the upward deviation, most
likely because it does not want to suffer from low demand.

23

In each case, we see agent 1 respond to the upward deviation by pricing low,
as they had for the downward deviation. These punishments more quickly result
in the original collusive equilibrium, perhaps because the deviating agent does
not gain profit from deviating or because most collusive equilibria are already
close to the monopoly price. An upward deviation is not advantageous to agent
0 since it is accepting lower demand, unless agent 1 greets it at a new higher
collusive equilibrium, which does not happen. Again, some of the punishing
strategies are not as clear as others, such as in Figure 3.7b where agent 0 prices
below agent 1 as they return to equilibrium, even though agent 0 deviated.
However, Figures 3.7a and 3.7c show a clear punishment by agent 1, and then
return to equilibrium.

Multiple Agents

We also see that collusion exists for more agents in the market, or n ≥ 2.
However, the collusion equilibrium price approaches the Nash equilibrium as we
add more agents, since it becomes harder to communicate through past actions.

24

(a) Two agents (n = 2) (b) Three agents (n = 3)

(c) Four agents (n = 4) (d) Five agents (n = 5)

Figure 3.8: Multiple agents’ equilibria for α = 0.15 and β = 1 × 10−5. Notice
that as we add more agents, the collusive price becomes lower.

Even though the Nash equilibrium and monopoly price change as we add
more agents, the Nash price pN stays roughly between 1.3 < pN < 1.5 and the
monopoly price pM stays roughly between 1.9 < pM < 2.2, so the figures are
mostly on the same scale. In each, the agents settle on a cyclic equilibrium, and a
few agents do not settle on the same equilibrium as others (slightly dominating).
As we add more agents, the range of ∆ slowly drops off, starting ∆ between
60-90% for two agents, to 40-70% for three agents, to 20-40% for four agents,
to 5-20% for five agents.

This is an important point of emphasis: as we increase the number of agents,
collusion is harder to achieve at a higher price. One potential solution for
collusion mitigation is including more agents, which may seem easy to do in a
real market. However, this may not always be possible due to lack of firms in a
specialized market, so we will investigate alternative ways to mitigate duopoly
collusion with methods that apply to markets with more agents as well.

25

3.3.3 Discrepancies with Calvano et al.
There are a few notable discrepancies between our results and the results of
Calvano et al. [4].

One discrepancy is the price at which Calvano et al.’s Q-learning agents
learn to collude, which seems to be slightly higher than the collusive prices of
our agents. Calvano et al. finds 70-90% ∆ across different α and β parameters,
which roughly translates to a collusive price from 1.7 to 1.8. When running our
Q-learning, we found ∆ more similar to 60-90%, which is closer to a collusive
price of 1.65 to 1.8. Overall, this is not that notable of a difference, but our
Q-learners collude slightly less efficiently across the suite of α and β parameters.

We also notice that our punishments to deviation are much less straight-
forward than Calvano et al. shows, with more erratic price changes before the
original collusive equilibrium is achieved. Even in the scenarios with stationary
collusive equilibria, we note complex patterns of punishment.

Another discrepancy is related to the dominating and cooperative collusive
outcomes. There is little mention in Calvano et al. [4] of a collusive equilibrium
that does not share the same (or similar) price. This may be mentioned subtly
as what they call “asymmetric” long-term price; however, their results imply
that this is rare, while we see dominating collusive outcomes quite frequently,
although cooperative collusive outcomes are still equally as common.

26

Chapter 4

Application to Advanced RL
Algorithms and a Continuous
Action Space

In this chapter, we will share results of various RL algorithms on Bertrand com-
petition. The Q-learning algorithm was implemented from scratch in Python,
but all other algorithms were implemented using Ray’s RLlib library [2].

This section is motivated by the application to the real-world market, in
which more advanced RL algorithms could be used on both the discrete and
continuous settings. We wanted to analyze whether collusion was specific to
Q-learning, or if collusion could be exacerbated by high performance algorithms
that make use of neural networks and other modern techniques. By using more
than just Q-learning, we also hoped to find what characteristics of Q-learning
made it effective for collusive outcomes, and to see whether all RL algorithms
could collude as effectively. The extension to the continuous action space is a log-
ical next step in applying the work to a real market, and we must study whether
the continuous scale prohibits or encourages collusion, to protect against these
algorithms being used in the near future.

First, we will explain the difference between on-policy and off-policy algo-
rithms, to give background on the advanced RL algorithms’ results.

4.1 On-Policy vs. Off-Policy Algorithms

Throughout experimentation, we noticed a contrast between on-policy and off-
policy algorithms in their ability to detect and engage in collusion. We can
further explain the difference between on-policy and off-policy to see why this
occurs, inspired by the book Reinforcement Learning: An Introduction by Sut-
ton and Barto [10].

27

4.1.1 On-Policy
On-policy reinforcement learning refers to the update of an existing policy, which
is affected by an agent’s next step. The policy is continually refined and opti-
mized based on the action that the agent takes in that timestep.

For example, the on-policy equivalent of Q-learning is an algorithm called
SARSA (State, Action, Reward, State’, Action’). SARSA has the same equation
as Q-learning except with one minor change.

Q-learning

Q(st, at)← Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at)).

SARSA

Q(st, at)← Q(st, at) + α(rt + γQ(st+1, at+1)−Q(st, at)).

Instead of updating the Q-table with the best next possible state-action pair
Q-value, we adhere to our policy and update based on what reward or value
our policy’s action produces. This can slightly limit one form of exploration
by keeping the algorithm on the path dictated by its policy; therefore, most
exploration comes from randomization and initialization, and less later on.

A3C and PPO are on-policy, so they improve their existing policy instead of
greedily taking the best action at each step. Because of this process, our RLlib
library treats the exploration and evaluation phases separately, i.e. the training
and testing phases, with the former consisting of mostly random actions while
the latter consists of no new exploration, and only follows the predetermined
optimal policy. This results in differences for the collusive performance between
A3C/PPO and our off-policy techniques.

4.1.2 Off-Policy
Off-policy reinforcement learning is independent of the agent’s action, and can
update with the expected result of an action without the agent actually taking
that action. An off-policy algorithm greedily takes the value associated with
the best expected reward.

Q-learning is the simplest off-policy algorithm, and it updates by taking
the value associated with the best action at that timestep. Instead of using
Q(st+1, at+1), it uses the maximum next action maxaQ(st+1, a). This allows
for a different form of exploration, and can be the difference between an optimal
and sub-optimal solution.

Q-learning, DQN, and DDPG, explained below, are all off-policy reinforce-
ment learning algorithms, and they reliably achieve the most collusion when
given the opportunity to collude in Bertrand competition.

We believe that off-policy algorithms perform better than on-policy because
it incorporates another form of exploration that on-policy algorithms lack. In
addition, our off-policy algorithms learn through decaying exploration, which
more easily coordinates collusion than the on-policy separated exploration and
evaluation approach.

28

4.2 Advanced RL Algorithms

Of all the algorithms we have tried in Bertrand competition, DQN and DDPG
were the best at colluding, and these are both off-policy algorithms like Q-
learning. The algorithms below are all implemented using Ray’s RLlib [2].

4.2.1 DQN
Deep Q-learning or Deep Q-Network (DQN) is similar to Q-learning, but inte-
grated with a neural network to simplify the observations given by the obser-
vation space in an attempt to improve performance. This method is off-policy
and only takes a discrete action space, like Q-learning.

This technique utilizes experience replay, a mechanism that uses a random
sample of prior actions instead of the most recent action to progress to the next
step and train, smoothing changes in the distribution of data and removing
correlations in the sequence of observations. In addition, the updates during
each step adjust the Q-table towards a target value that is only periodically
altered, which reduces target correlation further [8].

Exploration in DQN can be tuned by using the same epsilon-greedy tech-
nique. We start ε = 1 and end epsilon at ε = 0.000001, and we tune the
parameter for the steps it takes to go from the starting to ending epsilon, which
we will call epsilon steps (ε-steps).

4.2.2 A3C
Asynchronous Advantage Actor Critic (A3C) is an on-policy, discrete and con-
tinuous deep reinforcement learning algorithm [7].

Assume for a moment that we are playing a game with one agent inter-
acting with one environment. A3C is asynchronous because instead of using
that single agent and single environment, it uses multiple agents each with their
own network parameters and own replication of the environment. Each agent
asynchronously trains, and reports to a global network, diversifying the training
set.

Our Bertrand competition is a multi-agent environment, so in this scenario,
we replicate the environment and have a representative agent in each, e.g. if we
have five replicated environments, agent 0 has one copy of itself participating
in each environment against the copies of agent 1. The agent 0 copies report to
the global network for agent 0, and likewise for agent 1.

The actor-critic portion combines the methods of Value Iteration and Policy
Gradients by predicting both the value function and the optimal policy function,
using the value function to update the policy. Put simply, the policy is the
probabilistic distribution of the action space.

A3C also uses advantage instead of discounted rewards as most policy gra-
dient methods do. The advantage function tells the algorithm how much better
the rewards are than the expected reward [7].

29

4.2.3 PPO
Proximal Policy Optimization (PPO) is a policy gradient method for discrete
and continuous action spaces with a few added techniques.

PPO is highlighted by its ease of implementation, relatively low sample com-
plexity, and ease of tuning. It computes an update to minimize its cost function
while ensuring the deviation from the previous policy is limited. PPO uses trust
region updates which are compatible with Stochastic Gradient Descent, and
simplifies the algorithm by removing KL penalty [9].

4.2.4 DDPG
Deep Deterministic Policy Gradient (DDPG) is an off-policy continuous deep
reinforcement learning algorithm.

It combines the innovations from Deterministic Policy Gradient (DPG) and
Deep Q-Network (DQN) by introducing experience replay and slow-learning
target networks from DQN while utilizing the continuous functionality of DPG
[6].

4.3 Results

4.3.1 Discrete
We first look at the discrete case of Bertrand competition. We assume m = 15
evenly spaced actions throughout.

30

DQN

(a) Cooperating collusion (b) Dominating collusion

Figure 4.1: Different collusive optimums, both for 150k ε-steps. The cooperating
collusion (a) shows a high collusive price, while the dominating collusion (b)
shows a wide difference in collusive prices of agents, as an example of how
divergent the dominating collusion can become.

(a) Collusion, 10k ε-steps (b) Collusion, 250k ε-steps

Figure 4.2: Few vs. many training iterations (or ε-steps). An exploration phase
that is too quick (10k ε-steps) yields a weaker collusion that is not as high (a),
while a thorough exploration (250k ε-steps) reliably yields a high collusive price.

As we can see in Figure 4.1, these collusive strategies evolved differently given
unique randomization in their exploration phases. We most commonly observe
collusion that trends toward a ∆ of 70-90% across experiments, as shown by
Figure 4.1a and 4.2b. Note that the difference in exploration time does not
dramatically change this outcome, unless the algorithm is given far too little
time to explore, as shown in Figure 4.2a.

31

Regardless, note that a collusive equilibrium is reached much sooner than in
Q-learning. Q-learning takes approximately 1 to 2 million iterations to approach
a relatively high (60-90% ∆, or price of 1.65 to 1.8) collusive equilibrium, de-
pendent on the α and β parameters, while DQN takes 150-250k iterations, and
achieves on average a higher collusive price (1.75 to 1.8). Just as in Q-learning,
we see dominating and cooperating collusive equilibria, and in a much lower
number of steps. The performance does not change much when exploration is
tuned by ε-steps either. Too few ε-steps gives a weaker equilibrium shown in
Figure 4.2a, but still shows the agents significantly deviated from the Nash equi-
librium in only 10k steps. More ε-steps strengthens the equilibrium but makes
for a similar high equilibrium price compared to the price of 150k ε-steps, as
shown in Figure 4.2b with 250k ε-steps.

Another interesting result of using DQN is its robustness to perturbations
in the collusive equilibrium.

(a) Down deviation, stationary (b) Up deviation, stationary

(c) Down deviation, cyclic (d) Up deviation, cyclic

Figure 4.3: DQN’s response to deviation. In all instances, the algorithm imme-
diately returns to the original collusive equilibrium (with the exception of (c),
which takes an extra price step).

32

A return to collusive equilibrium is almost immediate in both cases, sta-
tionary or cyclic. Because DQN uses a complex strategy, and because many of
the actions appear random (note how for each of Figures 4.1 and 4.2 almost
the entire plot is orange), a single or even a few perturbations do not disrupt
the high collusive price. Either way, the high price indicates that DQN has a
propensity for collusion, and that this collusion may not be so easily disrupted.
However, we will see later that DQN can be disrupted by other means.

We also see that DQN colludes for multiple agents.

(a) Two agents (n = 2) (b) Three agents (n = 3)

(c) Four agents (n = 4) (d) Five agents (n = 5)

Figure 4.4: DQN training for multiple agents. We see that the inclusion of more
agents can slightly reduce collusive price; it can also give rise to more divergent
dominating equilibria.

A3C

As mentioned before, A3C must train randomly first before it can evaluate.
Therefore, agents do not quite learn collusion simultaneously, because explo-
ration does not decay as it does in off-policy techniques, which can lead agents
to slowly settle on a collusive equilibrium. Instead, the algorithms only follow

33

the optimal policy in the evaluation phase, which in some cases can create a
somewhat collusive equilibrium, but this equilibrium is not upheld by the same
principles and deviation punishments as seen in off-policy. We also observe a
lower collusive price than we see with off-policy algorithms.

34

(a) Exploration A (b) Evaluation A

(c) Exploration B (d) Evaluation B

(e) Exploration C (f) Evaluation C

Figure 4.5: Exploration and evaluation for discrete A3C. Each exploration is
mostly random, and there is not much continuity between evaluations, with runs
A, B, and C exhibiting variable equilibria. Run A may appear to be colluding,
but with run B we see that cooperating prices are not always the case, and run
C shows that this collusion is not always with a high collusive price. However,
this does not necessarily mean collusion is not occurring at some level.

35

We sometimes see what appears to be a collusive equilibrium, as with Figures
4.5a and 4.5b, but other runs may create a learned policy which may be too
independent to deem as collusive, as shown by Figures 4.5c and 4.5d, where one
agent learns to price Nash while the other prices in the middle. Punishment of
deviations does not occur.

PPO

Like A3C, PPO must explore separately from evaluation. Interestingly, PPO
shows an improvement over A3C in obtaining a collusive equilibrium, despite
its separate random training phase. However, this collusion has a low collusive
price, and shows a similar weaker ability to punish deviations.

36

(a) Exploration A (b) Evaluation A

(c) Exploration B (d) Evaluation B

(e) Exploration C (f) Evaluation C

Figure 4.6: Exploration and evaluation for discrete PPO. Each exploration is
random, and evaluations are very similar, with each showing a cooperative equi-
librium at similar collusive prices. Run A exhibits a cyclic agent, run B shows
a slight dominating equilibrium, and run C shows a cooperating equilibrium.

We see that all three exploration phases look roughly similar, and each eval-

37

uation phase learns to collude at around the same price, unlike in A3C.
We can look at deviation punishments to see that these collusive equilibria

sometimes return to normal immediately following the optimal policy, but others
take another perturbation to return to the original.

(a) Down Deviation A (b) Up Deviation A

(c) Down Deviation B (d) Up Deviation B

Figure 4.7: PPO’s response to deviation. For run A, we see a similar immediate
return to original collusive equilibria as seen in DQN, while in run B, the devi-
ation causes the agents to settle into a new collusive equilibrium, which is only
brought to the original collusive equilibrium by a subsequent upward deviation.

In Figures 4.7a and 4.7b, we see a similar deviation behavior to other algo-
rithms, one that almost immediately returns to normal, with slight punishment
in the upward deviation. However, in Figures 4.7c and 4.7d, we notice that
the deviation brings the agents to a new, lower collusive equilibrium, which
is brought back up to the original only after an upward deviation. This sig-
nals a weaker collusion, most likely brought about by the separation between
exploration and evaluation.

The two on-policy algorithms behave markedly different from one another;
this may be due to its difference in asynchronous training or the fact that PPO

38

is more state-of-the-art than A3C, but either way, both on-policy algorithms
perform much worse than our off-policy algorithms.

4.3.2 Continuous
In Bertrand competition described by Calvano et al., the price space is discrete
for illustrative purposes. However, prices in the real market are continuous,
and algorithms used in practice must reflect this. Now we will explore a few
continuous algorithms to see if collusion arises.

DDPG

For DDPG, we see significant collusion, one which is as good or better than
Q-learning and DQN in the discrete setting. Even with a much more complex
observation space, DDPG colludes reliably for several agent and environment
settings. This is due to its similarity to DQN, and the fact that it is an off-policy
algorithm.

39

(a) Cooperating collusion (b) Dominating collusion

(c) Three agents (n = 3) (d) Four agents (n = 4)

Figure 4.8: DDPG training for multiple agents. In (a) and (b), we show a
cooperating and dominating collusion; note that the dominating collusion is
much less divergent than with DQN or even Q-learning. In (c) and (d) we
introduce more agents and the collusive prices decrease slightly, but much less
than in Q-learning.

In Figures 4.8a and 4.8b, we have two agents n = 2 for our environment. The
cooperating and dominating equilibrium have similar, high collusive outcomes.
We can also see in Figure 4.8a that the actions played are never less than 1.6
or more than 1.8 after an initial exploration period, which is a departure from
what we observed in the discrete case. We also observe high equilibrium after
only about 2k iterations, which is remarkably fast to coordinate collusion. Runs
with two agents observe 70-90% ∆ across experiments, whereas runs with more
agents show a wide variety of profit depending on the specific agent.

The settings with more than two agents still observe a high collusive equi-
librium with relatively more dominating strategies at play; however, this is not
always the case. Sometimes, agents collude as cooperatively as Figure 4.8a.
An interesting note is that adding more agents does not significantly decrease
the collusive price, although a larger range of long-term prices for each agent

40

exists. This could be a product of the continuous price setting allowing more
expression in each agent, and that more fine-grained prices allow for agents to
communicate more effectively, even if the complexity of the space has become
larger when moving from discrete to continuous.

DDPG also quickly returns to its original collusive equilibrium once it ob-
serves a deviating agent, in both the downward and upward deviation setting.
It only takes one extra round to return to the original in both scenarios.

(a) Down deviation (b) Up deviation

Figure 4.9: DDPG’s response to deviation. Note the slight delay in the return
to original collusive equilibrium by the deviating agent; in both, agent 0 gives
another price just below (a) or above (b) the original collusive price, to see if
this would make for a useful deviation.

This could be because a complex cycle of punishment does not present itself
as in Q-learning, since there are no discretized states that lead to a pattern of
price increase towards the original collusive equilibrium. Instead, this is a very
quick and less aggressive punishing strategy, as shown by the punishing agent’s
behavior to move slightly in the direction of the deviation after one time step.
The deviating agent remains slightly in the direction of the deviation after its
initial large deviation, but after viewing the punishing agent’s response, decides
to return to the original collusive price. DDPG knows that the optimal strategy
is what it was doing originally, so it changes accordingly.

We use DDPG as our representative continuous algorithm in later sections.
DDPG is an algorithm that can be implemented relatively easily in real-world
pricing scenarios, and this is why we must pay attention to its collusion prop-
erties.

A3C and PPO

A3C and PPO can also take a continuous action space [7]. However, these
algorithms learned to price quite low, which was hard to classify as collusion
or just misunderstanding of the environment. Further research could be carried
out with A3C and PPO in the continuous setting.

41

4.3.3 Summary
We have noticed several trends for algorithms that achieve the highest perform-
ing collusion. First, we noticed that off-policy algorithms outperform on-policy
algorithms, partially because off-policy algorithms utilize an alternative form of
exploration that on-policy algorithms lack, but also because our implementa-
tion of off-policy algorithms incorporates a decaying exploration rate that co-
ordinates collusion from initialization through evaluation. Our on-policy imple-
mentations require separation of exploration (training) and evaluation (testing),
which creates a scenario in which algorithms must pick up on collusive practices
from random observation and reward, which obscures communication between
agents and leads to lower “collusive” prices. We also noticed our advanced off-
policy algorithms see high performing collusion in many fewer convergence steps,
indicating that Q-learning is only the tip of the iceberg as far as the capabilities
of AI collusive practices.

To summarize the results from above, I have provided Table 4.1. The table
describes the state space, convergence, collusive price, general collusive strength
measured by ability to punish deviations and frequency of collusive outcomes,
and profit gain ∆. The convergence for A3C and PPO is not defined since the
exploration length is determined by the user.

Algorithm State Space Convergence Price Strength ∆
Q-learning Discrete 0.75-2m 1.65-1.8 High 60-90%

DQN Discrete 150-250k 1.7-1.8 High 70-90%
A3C Discrete N/A 1.55-1.7 Low 30-70%
PPO Discrete N/A 1.55-1.7 High 30-70%
DDPG Continuous 2k 1.7-1.8 High 70-90%
A3C Continuous N/A 1.45 Low 0%
PPO Continuous N/A 1.45 Low 0%

Table 4.1: Results of each algorithm. Q-learning, DQN, and DDPG have the
strongest and highest collusion. DQN and DDPG learn in significantly fewer
steps than Q-learning. A3C and PPO perform slightly worse, with A3C exhibit-
ing lower collusive strength.

42

Chapter 5

Mechanisms to Hinder
Collusion

To interrupt the communication between agents that leads to collusive out-
comes, we propose a few methods that can disrupt collusive equilibria while
still minimizing the effect on market interference (i.e. meeting demand at a
reasonable price, etc.).

The first mechanism consists of introducing a supervisor agent that can boost
demand to a specific pricing agent, which can interrupt collusion and commu-
nication between pricing agents. The supervisor is rewarded for minimizing the
product or sum of the prices. We used this on Q-learning, DQN, and DDPG,
and found collusion decreases for each, especially DQN.

The rest of our mechanisms are environmental changes in which we artifi-
cially step prices downward, similar to how an anti-collusive government would
interrupt a market. These methods have their own consequences, which we will
discuss.

5.1 Supervisor Approach

5.1.1 Overview
A first kind of approach is to introduce another agent, which we called the
supervisor agent. The supervisor works in a way similar to Amazon’s “Buy
Box”, shown below.

The buy box works to highlight certain vendors of a substitutable good, while
sidelining other vendors. In Figure 5.1, we see that the “Add to Cart” feature
automatically highlights one firm in particular, and that only upon scrolling
down do we see other sellers who may have different prices for the same good.
This method works to funnel demand towards a certain vendor, perhaps because
they paid Amazon more or they are better vendors to work with. In any case,

43

Figure 5.1: Amazon “Buy Box” with sellers offering other prices below [5]

we will use this idea to direct more demand towards a certain agent, in the hopes
that this will disrupt the balance of a colluding equilibrium among agents.

In each experiment, our supervisor agent works with the same reinforcement
learning algorithm as the pricing agents. The supervisor agent’s action space
will be a discrete choice of one of the n agents, and whichever agent is chosen
receives a boost to demand by a specific proportional amount, which we call the
proportion boost, while the other agents lose the corresponding proportion of
demand. For example, for a proportion boost of 1.25, if the supervisor agent’s
action is “agent 0”, then agent 0 will receive their demand (calculated from prices
of that round and other initialization parameters) multiplied by the proportion
boost 1.25, and agent 1 will receive their demand multiplied by 0.75, given by
2− 1.25 = 0.75. This method can result in more or less total demand than the
demand function dictates, but the difference is negligible.

The supervisor’s reward is determined by negating the product (or sum
if wanted) of the agents’ prices; therefore, a lower total is preferable for the
supervisor, so it is essentially rewarded for minimizing the prices of the agents.
The supervisor’s observation is the set of prices of the other agents, with the
same length of memory k. For Q-learning, the supervisor chooses its action
after the pricing agents, so it may take their current prices as its observation.
For DQN and DDPG, the supervisor must choose its action at the same time
as the pricing agents, so it must use the previous prices as its observation like

44

the pricing agents themselves; this is because of limitations of our library.
We will now observe how our algorithms behave with a supervisor agent,

specifically testing against our best performing algorithms: Q-learning, DQN,
and DDPG. Note that for each, the supervisor agent uses the same algorithm as
the pricing agents; therefore, a supervisor for Q-learning agents uses Q-learning,
etc.

5.1.2 Q-Learning
When using Q-learning with the supervisor agent, we stagger training so it is
possible for the supervisor to take current price observations, instead of making
all agents choose an action simultaneously based on the observations of the
previous round. We believe a supervisor agent in a real market would have
oversight of pricing and agent tendencies before choosing their action, so we
made this possible.

(a) Without supervisor (b) Proportion boost 1.25

Figure 5.2: Q-learning with and without a supervisor agent. We see a decreased
collusive price throughout our experimentation, which decreases from 60-90%
∆ for normal Q-learning to 30-70% ∆ for Q-learning with a supervisor.

We first notice that the RL algorithms are much more unstable, as shown
in Figure 5.2b; algorithms have a moving average that varies quite dramatically
when exploration is decaying at a certain rate, and the algorithm’s behavior
does not settle down until they stop exploring. This suggests that collusion is
not as sustainable at this level.

We notice the equilibrium value at the end of training decreases a little
between the original and supervisor training runs, so agents are still learning
that pricing higher is better than the Nash equilibrium. Whereas we see 60-90%
∆ before, we see 30-70% ∆ when using the supervisor mechanism.

Overall, this decrease in collusion was relatively successful, with less sustain-
able collusion and a substantial ∆ decrease.

45

5.1.3 Advanced Algorithms
Because of the limitations of the RLlib library and the difficulty to stagger
rewards, for these advanced algorithms we made pricing and supervisor agents
choose their actions simultaneously. When using this simultaneous method for
Q-learning, the results did not change, so we assume this is a fair simplification
to make.

In the case of DQN, we see a clear disruption of collusion, in both the stability
of collusion and decrease in equilibrium value.

(a) Without supervisor (b) Proportion boost 1.25

Figure 5.3: DQN with and without a supervisor agent. We observe a significant
drop-off in collusive price across experimentation, which decreases from 70-90%
∆ for normal DQN to 0-40% ∆ for DQN with a supervisor.

DQN performs very well when measuring strength and persistence of col-
lusion, but the supervisor agent disrupts this equilibrium quite effectively, as
shown in Figure 5.3b. We record profit gain decrease from 70-90% ∆ to 0-40%
∆ across runs. When the supervisor intentionally tries to bring down the equi-
librium price by choosing which agent gets a demand boost, the agents are not
rewarded as much as they anticipated for colluding cooperatively, and continue
to search the action space or deviate on other agents more frequently. The bal-
ance of collusion here is fragile, and if an agent deems the collusion too unstable
or not as rewarding as deviation, they will head towards the Nash equilibrium.

For DDPG, we see that a supervisor agent can decrease equilibrium price,
but overall the supervisor does not affect the collusion as much, as shown in
Figure 5.4. Because DDPG is a continuous algorithm, and choosing an agent
to give a price boost is a discrete action, we give the DDPG supervisor agent
the continuous action space between 0 to n, and floor the output to choose the
agent. For example, if the DDPG supervisor agent’s action is 1.34, we floor
this to 1, which applies the proportion boost to agent 1. This may make the
relationship between action and reward harder to discern for DDPG, which also
contributes to the result below.

46

(a) Without supervisor (b) Proportion boost 1.25

(c) Proportion boost 1.75

Figure 5.4: DDPG with and without a supervisor agent. We observe a decrease
in collusive price when introducing the supervisor agent, from 70-90% ∆ for
normal DDPG to 40-70% ∆ for DDPG with a supervisor.

DDPG is one of the strongest and most reliably collusive algorithms, so
it is somewhat unsurprising that it will still perform well under a supervisor.
However, it does drop off decently across runs, from 70-90% ∆ to 40-70% ∆.
The DDPG mechanism may not rely on fragile or intricate collusive mutual
understandings, and instead calculates a new collusive equilibrium price given
that the supervisor disrupts demand.

5.1.4 Discussion
It is quite difficult to discern why these algorithms respond differently to super-
visor agent integration. We see that DQN’s collusive price decreases by more
than Q-learning and DDPG, but all decrease notably. One possible explanation
is the rate of exploration. DQN explores using the epsilon-greedy approach, but
it anneals its ε parameter more constantly than the other algorithms. When

47

Q-learning and DDPG explore at an exponentially decaying rate, they find a
collusive equilibrium given the change in demand boosts dictated by the su-
pervisor, and stay on that decreased collusive equilibrium, but this does not
decrease further. Meanwhile, with DQN exploring at a more constant rate, its
new collusive equilibrium is continually disrupted further, repeating the cycle
until it is at or near the Nash price. Essentially, because DQN explores in a
different manner than Q-learning and DDPG, it is disrupted by the supervisor
agent more constantly, even though it can reach high collusive prices without
the supervisor present.

For negligible to little market interference, measured by the loss or excess of
demand and the subsequent alteration of the market, we find that collusion can
be mitigated quite dramatically by the supervisor agent, utilizing AI working
against the collusion of another AI.

Another possible supervisor mechanism could alter the prices themselves,
instead of the demand to each agent. This way, the supervisor could learn the
Nash price without it being explicitly told, and collusion can be disrupted by the
loss of communication through the price history. However, certain limits must
be set to stop the supervisor from simply charging the lowest price. Further
research could explore this alternative supervisor method.

5.2 Environment Changes

Inspired by different auction tweaks, we have also tested a second set of methods
that alter reported prices to impede collusion, which we describe below. Some
of these methods are more realistic than others, but observing the algorithms’
responses can be helpful hints as to how they adapt and work.

Collusion is already an inefficiency of the market; a market should trade at
the competitive price, or in our case the Nash price. This is where demand and
supply meet, set by the consumers and firms respectively. However, collusion
detracts from fair and free trade, and gives firms more profit while taking from
consumers. To measure the extent of market interference by the environmental
changes, we define absolute price change as the difference between the origi-
nal price set by each agent and the new price set by the mechanism for each
agent. We can measure how much our mechanism is interfering in the market
by plotting this absolute price change for each training run.

5.2.1 Downward Price Step
In one scenario, we make the first, higher price equal to the second, lower price,
and force the second price to be just above the marginal cost or Nash price. In
the case of a tie, the first agent’s price is set to just above the marginal cost.

Let p0,t be the price of agent 0 in period t, and let p1,t be the price of agent
1 in period t. So, if the prices reported are p0,t = 1.4 and p1,t = 1.6, then for
a marginal price or Nash equilibrium price pN of 1.0, we force the lower price
to pN , and make the higher price equal to the lower price, so p0,t goes from

48

1.4 → 1.0 and p1,t goes from 1.6 → 1.4. This scenario mimics interference in a
free market by anti-collusive government laws or mandates, which benefits the
consumers over the firms by lowering prices to around the marginal cost.

(a) Q-learning (b) Absolute price change of run

(c) DDPG

Figure 5.5: Downward price step anti-collusive mechanism. We observe that
both agents quickly learn to price near the Nash, since whichever agent has the
lower price will receive much more demand if the other agent has a higher price.
We include the absolute price change as a measure of interference in the market
by showing how much the mechanism alters the prices of both agents.

Proceeding with this method would constitute a substantial market inter-
ference, as prices are not set as requested and firms are mostly being forced to
price low. We measure the level of interference by the plot of absolute price
change, which stabilizes at around 0.1 per round near the end of training.

Whichever agent prices higher will lose much of the demand in each round,
since the lower agent will receive almost all demand because of its undercutting
of the market. Therefore, the agents quickly learn to price low, and they be-

49

have by pricing near the Nash equilibrium, as shown with Q-learning in Figure
5.5a. However, in the continuous setting with DDPG in Figure 5.5c, one agent
still prefers to price much higher than the other, perhaps because it enjoys an
advantageous combination of decent demand for a higher price. The continuous
setting allows for agents to find these more fine-grained equilibrium solutions.
This DDPG run is a dominating equilibrium, but it is more exaggerated by
the price mechanism; for most rounds, agent 0 prices below agent 1, and this
becomes stable after some time.

5.2.2 Fractional Decrease
Another similar method is to set the highest price to the second highest price,
and then half or third the second price’s index in the discrete action space. So,
when our agents price p0,t = 1.6 and p1,t = 1.8, then p1,t goes from 1.8 → 1.6
and the other becomes p0,t = 1.6−1.0

2 + 1 = 1.3, or shown by mapping discrete
action to price, discrete action 6 is made into discrete action 3 as 6

2 = 3→ 1.3 =
p0,t, assuming the discrete actions were m = 10 from $1 to $2. This reduces
equilibrium value as shown in Figure 5.6, but not by as much, to keep more
profit for the firms.

50

(a) Q-learning, halving lowest price (b) Absolute price change of run

(c) Q-learning, third of lowest price (d) Absolute price change of run

(e) DDPG, halving lowest price (f) DDPG, third of lowest price

Figure 5.6: Fractional decrease anti-collusive mechanism. We see a less dramatic
Q-learning collusive price decrease in (a) and (c) when using the fractional
decrease instead of the downward price step. We show the absolute price change
done by the mechanism over time. DDPG shows similar behavior, but with a
more divergent dominating equilibrium.

51

We see that this method has a less dramatic effect on bringing down price as
the previous method. The absolute price change by the mechanism stays around
0.1 to 0.2. Cycles arise when agents trade off being the lower pricing agent, and
this can be mutually beneficial. For Q-learning, dividing by more (half, third,
fourth, etc.) brings the prices down more, but for DDPG, dividing by more
seems to exaggerate the dominating equilibrium. This may be due to the fact
that if we divide by too much, agent 0 will price below Nash equilibrium, which
changes the environment.

5.2.3 Constant Decrease with Original Demand
Interestingly, when we tested making the first price into the second price and
the second price into a constant decrease below the second price, such as a
0.1 decrease, we did not observe a lower collusive price, and in fact observed a
mid-to-high dominating collusive price. This was due to the mechanism forcing
agents to price very close to one another, aiding in collusion and communication.

Therefore, another method is to calculate demand based on the initial quoted
prices, and keep the same demand for each agent while we make the first price
into the second price and the second price into a constant decrease below the
second price. When we changed prices in the above mechanisms, we also changed
demand since demand was calculated as a function of each agent’s price.

Using our original demand for each agent, for example, with p0,t = 1.5 and
p1,t = 1.7, this would become p1,t = 1.7 → 1.5 and p0,t = 1.5 − 0.2 = 1.3 if we
went down the constant 2 discrete actions or the continuous 0.2 price decrease.

52

(a) Q-learning (b) Absolute price change of run

(c) DDPG

Figure 5.7: Constant decrease with original demand anti-collusive mechanism.
We include absolute price change across iterations as an estimate of interference
by the mechanism. Our (a) shows an erratic exploration phase, and a decreased
collusive price. Our DDPG shows a decreased collusive price as well.

This makes for a particularly wily training period in Q-learning for Figure
5.7a, and decreases equilibrium price by a decent amount. After a certain point,
we see that agent 0 has hardly any price change, while agent 1 has a constant
amount just below 0.1. For our experimentation, in the discrete case we decrease
the second price by 2 discrete actions, and in the continuous case we decrease
by the value of 0.1. Because the Q-learning run shows quite erratic training,
it is indicative of a weaker collusion, one that does not punish deviations back
toward equilibrium. Again, we see a dominating strategy in DDPG at a low
price as well.

53

5.2.4 Discussion
These three methods yield different results of collusion based on their level of
disruption.

The downward price step forces the second price downward, which is the
most aggressive but most effective tactic of lowering the collusive price, and
this collusive equilibrium is quite stable. Its plot of absolute price change shows
the most market interference, but the absolute price change is still comparable
to the later mechanisms. The fractional decrease can lower collusive price by
more depending on the fractional scale, which can be tuned. This also has
a relatively stable collusive equilibrium. The constant decrease with original
demand decreased collusive price, but also resulted in a much more erratic
exploration phase, and therefore a less sustainable collusive equilibrium, which
we also noticed when testing punishment of deviations.

There is no best environmental change mechanism; however, as a general
rule, the more invasive methods usually yield lower collusive price. The down-
ward price step shows the most absolute price change, while the constant de-
crease with original demand shows the least, and this reflects how much the
collusive price was lowered by each mechanism. Therefore, markets must choose
a method to fit their needs.

54

Chapter 6

Conclusion

The use of reinforcement learning algorithms on pricing markets has already
begun, and it is paramount to make sure these markets do not descend into
monopolistic and exploitative practices. We have found that many algorithms
can learn to collude, and almost none price the Nash equilibrium or compet-
itive price. However, we have also found that there are ways to disrupt this
collusion and high collusive pricing, with some methods exhibiting more market
interference than others.

We have verified the Calvano et al. [4] results starting from scratch in Python,
and have further tested them with more advanced reinforcement learning algo-
rithms. We have extended Bertrand competition into the continuous setting,
and found that many of the same collusive relationships still apply, with collu-
sion potentially even stronger and more exploitative in this setting.

We have seen that there is a discrepancy between on-policy and off-policy RL
algorithms in their ability to produce collusive outcomes, and have opened up
the possibility to study this phenomenon more thoroughly. On-policy algorithms
may lack an essential form of exploration that precludes them from collusion,
while off-policy algorithms seem to collude across the board.

We found that mitigating or disrupting collusion is not easy to accomplish,
especially without significantly interfering in the market. By using a supervisor
agent “buy box” system, we can disrupt collusive behavior. For all algorithms,
the supervisor strategy can bring down both collusive behavior and equilibrium
price notably. With anti-collusive measures, we can bring agents to price the
Nash, but this comes at the expense of free trade and resembles government
control of the market.

All areas could be subjects of further research, and each will significantly
impact the pricing market of goods for the future. There is still much to be
done for this problem, and it is clear to see the massive economic implications
of the optimal solution, once it is achieved.

55

Bibliography

[1] Ibrahim Abada and Xavier Lambin. Artificial intelligence: Can seemingly
collusive outcomes be avoided?, February 2020. ENGIE Impact, Grenoble
Ecole de Management.

[2] RISE Lab at UC Berkeley. Rllib.

[3] Joseph Louis François Bertrand. Book review of “Theorie mathematique
de la richesse sociale and of recherches sur les principles mathematiques de
la theorie des richesses”. Journal de Savants, 67(1):499–508, 1883.

[4] Emilio Calvano, Giacomo Calzolari, Vincenzo Denicolo, and Sergio Pas-
torello. Artificial intelligence, algorithmic pricing, and collusion. American
Economic Review, 110(10):3267–3297, 2020.

[5] Amazon.com Inc. Amazon buy box, 2021.

[6] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning, 2019. ICLR 2016.

[7] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning, 2016. ICML 2016.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning, 2013. NIPS Deep Learning Workshop 2013.

[9] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal policy optimization algorithms, 2017. OpenAI.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, Massachusetts, 2017.

[11] Wikipedia contributors. Bertrand competition — Wikipedia, the free en-
cyclopedia, 2020. [Online; accessed 14-March-2021].

56

	Introduction
	Overview
	Contribution

	Model
	Assumptions
	Generalization
	Definitions

	Nash Price
	Monopoly Price

	Reinforcement Learning and Replication of Results
	Reinforcement Learning
	Experiment Design
	Replication of Results
	Q-learning
	Results
	Discrepancies with Calvano et al.

	Application to Advanced RL Algorithms and a Continuous Action Space
	On-Policy vs. Off-Policy Algorithms
	On-Policy
	Off-Policy

	Advanced RL Algorithms
	DQN
	A3C
	PPO
	DDPG

	Results
	Discrete
	Continuous
	Summary

	Mechanisms to Hinder Collusion
	Supervisor Approach
	Overview
	Q-Learning
	Advanced Algorithms
	Discussion

	Environment Changes
	Downward Price Step
	Fractional Decrease
	Constant Decrease with Original Demand
	Discussion

	Conclusion

